Managing Firefighting Foam Queensland's experience

Nigel Holmes

Principal Advisor Incident Management Incident Response Unit Environmental Services and Regulation

8 May 2024 - Gold Coast Convention and Exhibition Centre

N-EtPFOSA

Department of Environment and Science

Managing Firefighting Foam Queensland's experience

- Managing all types of firefighting foam
 What are PFAS and why are they a problem
 The global transition away from PFAS
 What are the alternatives
- > Waste disposal problems and options

Department of Environment and Science

Effective

Environmental Perspective of Foams

<u>Short-term</u> aquatic toxicity – ALL very LOW Oxygen depletion potential – ALL HIGH <u>but</u>... ("BOD" For FFF only an issue for enclosed waterways)

NORMAL RANGE

FISHKILLS

_	concentration	
Toxicity Category	Range (mg/L)	
Super Toxic	< 0.01	
Extremely Toxic	0.01 –0.1	
Highly Toxic	0.1 –1	
Moderately Toxic	1 –10	
Slightly Toxic	10 –100	
Practically Nontoxic	100 –1,000	
Relatively Harmless	> 1,000	

US Fish and Wildlife Service toxicity scale Aquatic EC50 or LC50 (freshwater)

Why are they called "PFAS"? "Per- and poly-Fluoro Alkyl Substances"

8:2 Fluorotelomer sulfonate

8:2 Fluorotelomer sulfonamido propyl betaine (Dimethylene –CH2-CH2- non-fluorinated carbons "spacer" circled)

Atoms: Carbon Oxygen Sulfur Nitrogen Hydrogen

All you need to know about "PFAS" "Per- and poly-Fluoro Alkyl Substances"

PFAS have fluorinated carbon chains:

- Indefinitely persistent.
- **Toxic** to varying degrees.
- Bio-accumulative.
- Highly mobile and dispersive.
- "Precursors" are also PFAS.

PFOS, PFOA and PFHxS are only <u>three</u> of 1,000s of PFAS

Foam PFAS (~200)

Fluorotelomer sulfonates C4-C10 (4)

Fluorotelomer thiohydroxy ammonium C4-C14 (6)

Fluorotelomer sulfonamido alkyl betaines C4-C12 (5)

Fluorotelomer thioamido sulfonates C4-C14 (6) (21 PFAS for just these 4 functional moieties)

~14,000 PFAS

C8 PFOS C6 PFHxS C8 PFOA All are or transform to permanent pollutants

Queensland Government

The motivation to phase out PFAS

Increasing impact on a wide range of values especially:

- Resource degradation (drinking water sources, soils,...)
- Social values (amenity, recreation, fishing, tourism,...)
- Economic values (fisheries, crops, livestock, land values,...)
- Costs to business & community (disposal, land use limitations,...)
- Legacy sites (adjacent impacts, cleanup costs \$\$\$, wastes,...)
- **Reputation (corporate**, industry, **political**, location,...)
- Health impacts (range of associated adverse health outcomes,...)
- Environmental values (waterways, wildlife,...)
- Legal actions & claims growing (against manufacturers & end users)

!! E.g., Low-level PFAS exposure reduces vaccine effectiveness

ONOMIC COST

RISING SOCIAL

PFAS health exposure risks "more likely than not"*3M Chief Health Officer

Possible & probable adverse effects:

- Reproductive impairment, low sperm count
- Chronic kidney & liver disease
- Type 2 diabetes
- Endocrine disruption
- Immune system depression
- Cholesterol elevation
- Vaccine interference (incl. Covid!)
- Testicular, thyroid & kidney cancer
- Early menopause, ovarian cysts
- Delayed development & puberty
- Osteoporosis, uterine nodules
- ADHD, low birth weight & others.

Long elimination times in humans

Evidence of adverse effects from low level exposure to PFAS <u>combinations</u> emerging.

What PFAS arise from firefighting foam?!

Complex PFAS used in current foams

transform to produce a diversity of intermediate PFAS that are likely to have greater adverse effects than the parent or the simple end-point carboxylates.

- The transformation shown is for the **simple** 8:2 fluorotelomer alcohol.
 - 1 parent PFAS (8:2 FTOH at top left)
 - 16 intermediate PFAS (?effects)
 - 5 end-points including PFOA (boxes)

After Washington, Jenkins & Webber, ES&T 2015, 49, 13256-63 \rightarrow \rightarrow \rightarrow \rightarrow ???

Global Directions on PFAS – ~Phase out all PFAS

Stockholm Convention

Recent Stockholm Convention decisions increasingly for phase out

- PFOS, PFOA and related substances flagged for phase out.
- PFHxS and related substances listed for elimination June 2022.
- Appropriate disposal of wastes in a sustainably sound manner (Basel Convention).

Short-chain (≤C6) PFAS not an alternative

The Stockholm Convention decisions and recommendations included:

"... a transition to the use of short-chain per- and polyfluoroalkyl substances (PFASs) for dispersive applications, such as fire-fighting foams, <u>is not a</u> <u>suitable option</u> from an environmental and human health point of view".

EU Commission 2021/1297 – C9-C14 PFCAs regulation of use and limits.

Global Directions - Regrettable Substitutions (C6)

Short-chain PFAS risk same as long-chain risk Increasing evidence for short-chain adverse effects:

- Increasing exposure from increasing releases.
- Much high mobility in soils and groundwater.
- Very difficult and expensive to remediate.
- Readily taken up into edible parts of food crops.
- Recirculate in the environment & food chain.
- Consumption limits already exceeded in places.

6:2 Fluorotelomer sulfonate (bioaccumulative)

BOTH SHORT- AND LONG-CHAIN PFAS HAVE SAME LIABILITY

20-30 intermediates?

Industry-Regulator Partnerships Approach THE QLD POLICY FOUNDATIONS (2012-2016)

Identifying and defining the relevant issues:

- Achieving a common understanding of the current state-ofknowledge, risks and liabilities driving change.
- Assessing real risks, setting priorities and achievable goals.
- Recognising the practicalities and balancing against risks.
- Myth Busting, breaking old habits, sorting facts from fiction.
- Sharing information and perspectives.
- Making decisions on emerging but substantial information.
- Staging transition realistically to take into account all factors.

The Queensland Foam Policy Experience PRACTICALITIES & CONCESSIONS

- ✓ Balancing Safety-Performance-Cost-Health-Environment issues.
- ✓ Assessing risks to values as inputs to setting priorities.
- \checkmark Setting achievable stages and timelines for transition.
- ✓ Physical or procedural interim measures to reduce risk (releases).
- Setting achievable standards for cleanout of systems.
- ✓ Accepting contamination of new foam by PFAS residues.
- (C6 PURE only for very limited use no longer relevant).
- ✓ Facilitating new PFAS waste disposal technologies.

Non-persistent (fluorine-free) alternatives

Carbohydrates/Saccharides

Industry application	Australia/New Zealand	FFF certified	
LAST terminal facilities & refineries Hydrocarbons, blends and polar solvents	LASTfire batch test & EN1568 (some UL / FM for fixed systems)	Yes	
Very large fuel storage tanks (including crude oil)	LASTfire batch test & EN1568 (some UL / FM for fixed systems)	Yes	
Aviation hydrocarbon fuels	ICAO & EN1568	Yes	
Offshore (hydrocarbon fuels, some methanol polar solvents)	ICAO & EN1568	Yes	
Fire brigades Hydrocarbons, blends and polar solvents	ICAO & EN1568	Yes	
Defence	DEF(Aust)5706 / ICAO Level B	Yes	
Ports, tugs and ships	EN1568 / DNV / IMO	Yes	
Oil and gas	LASTfire batch test & EN1568 (some UL / FM for fixed systems)	Yes	
Mines	EN1568	Yes	
General industries (Chemicals, power stations, etc.)	LASTfire batch test & EN1568 (some UL / FM for fixed systems)	Yes	
Mining heavy vehicles	AS5062	Yes	
Hand-held extinguishers	AS1841	Yes	
ote – US Mil-Spec MIL-PRF-32725 (I1) SFFF is fluorine-free and no longer requires PFAS			

(Oleofin sulfonate)

Atoms:

Carbon

Oxygen

Sulfur Hydrogen

Fully biodegradable organic components

Queensland's transition away from PFAS foam *Outstanding regulatory issues*

- ✓ Fluorine-free now available for all applications.
- ✓ Very large fuel tank facilities have transitioned or will finish shortly.
- ✓ About +90% of users have transitioned, most in the first year.

COMPLIANCE ISSUES

- Transition grace period ended in 2019
- ✗ PFAS foam actively on regulatory radar
- **×** PFAS by licensed waste disposal

PFAS waste disposal options PFAS ARE HIGHLY RESISTANT

- **NOT Sewage treatment plants** PFAS pass straight through to release.
- **NOT Composting** PFAS do not biodegrade and are taken up by crops.
- **NOT Landfills** PFAS outlast the life of the landfill liner and are released.
- **NOT Domestic incineration** Temperatures are too low for complete destruction with PFAS releases to air \rightarrow \rightarrow

WASTES MUST BE MANAGED RESPONSIBLY

Perfluoromethane Hexafluoroethane Potent greenhouse gases 1/2 –life ~50,000y.

Waste generator responsible until final destruction

Department of Environment and Science

Thank you

Nigel Holmes Principal Advisor Incident Management Queensland Department of Environment and Science nigel.holmes@des.qld.gov.au

8 May 2024 - Gold Coast Convention and Exhibition Centre

